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∗ Institute of Systems Theory and Automatic Control,
University of Stuttgart, Germany,

(e-mail: {shuyou,reble,allgower}@ist.uni-stuttgart.de).
∗∗ State key laboratory of automobile dynamic simulation,

and Department of Control Science and Engineering,
Jilin University, PR China,
(e-mail: chenh@jlu.edu.cn)

Abstract: We consider inherent robustness properties of model predictive control (MPC) for
continuous-time nonlinear systems with input constraints and terminal constraints. We show
that when the linear quadratic control law is chosen as the terminal control law, and the related
Lyapunov matrix is chosen as the terminal penalty matrix, MPC with nominal prediction model
and bounded disturbances has some degree of inherent robustness. We emphasize that the input
constraint sets can be any compact set rather than convex sets, and our results do not rely on
the continuity of the optimal cost functional or control law in the interior of the feasible region.
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1. INTRODUCTION

Since robust MPC methods are much more complex than
those developed schemes for nominal MPC, it is of in-
terest to analyze under which conditions nominal MPC
can guarantee robustness in the face of specific classes of
disturbances. Under the fundamental assumption that the
presence of uncertainties and disturbances do not cause
any loss of feasibility, the robustness properties of nomi-
nal MPC algorithms are proposed (Nicolao et al. (1996);
Magni and Sepulchre (1997); Scokaert et al. (1997)). The
assumption holds true when the problem formulation does
not include state and input constraints and when any
terminal constraint used to guarantee nominal stability
can be satisfied also in perturbed conditions (Magni and
Scattolini (2007)). Findeisen and Allgöwer (2005) show
that nominal MPC possesses inherent robustness proper-
ties if the optimal cost functional is locally Lipchitz contin-
uous. However, both the resulting MPC control law and
value functional associated to the optimization problem
defining nominal MPC can be discontinuous (Meadows
et al. (1995); Rawlings and Mayne (2009); Fontes (2001)).
Grimm et al. (2004) used examples to illustrate that
MPC applied to nonlinear systems can produce nominal
asymptotic stability without any robustness, when the op-
timization problem contains state constraints or terminal
constraints with short horizons. The works depend on the
facts that continuity of the optimal value functional on
the interior of the feasibility region is a sufficient condition
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for robustness, as is continuity of the feedback law on the
interior of the feasible region. However, both conditions are
hard to verify since in general no explicit expression of the
cost functional or the MPC control law can be obtained.

In this paper, we consider the inherent robustness of quasi-
infinite horizon MPC of nonlinear systems with input
constraints. The optimization problem has a terminal con-
straint, and the uncertainties are persistent. The analysis
does not rely on the assumption of the the continuity of
the value functional or of the control law, or the discussion
on the continuity of the value functional or of the control
law, and are thus both more general and of practical use
than previous results. The results show that the degree of
robustness depends on the terminal ingredients, such as
terminal penalty matrix and terminal set, prediction hori-
zon, the upper bound on disturbances and the logarithmic
norm of the system.

The remainder of the paper is organized as follows. The
problem is set up in Section 2. Terminal conditions of nom-
inal stability, recursive feasibility of optimization problem
and robust stability are given in Section 3. Section 4
concludes the paper with a brief summary.

1.1 Notations and basic definitions

Let R denote the field of real numbers, and R
n the

n-dimensional Euclidean space, Z[0,∞) the field of non-
negative integer. For a vector v ∈ R

n, ‖v‖ the 2-norm and

‖v‖Q =
√

vT Qv with Q ∈ R
n×n and Q > 0. Suppose that

M ∈ R
n×n, λmin(M) (λmax(M)) is the smallest (largest)

real part of the eigenvalue of matrix M , σ̄(M) the largest
singular value of M and µ(M) is the logarithmic norm of
matrix M . d(X1,X2) is the distance of sets X1 and X2.
The operation ⊕ is the addition of sets A ⊂ R

n and
B ⊂ R

n, A ⊕ B :=
{

a + b ∈ R
n|a ∈ A, b ∈ B

}

. The
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operation ⊖ is the subtraction of sets A ⊂ R
n and B ⊂ R

n,
where A ⊖ B := {x ∈ R

nx |{x} ⊕ B ⊆ A}. Denote the
set B0 := {x ∈ R

n|xT x ≤ 1}, and ∅ as the set which
has no element. Denote L

n
[a,b] as the space of all Lebesgue

functions mapping from [a, b] to R
n.

Definition 1. (Rawlings and Mayne (2009))
The Hausforff distance d(·) between two subsets X and Y
of R

n is defined by

d(X ,Y) := max{sup
x∈X

d(x,Y), sup
y∈Y

d(y,X )},

in which d(a,M) denotes the distance of a point a ∈ R
n

from a set M ⊂ R
n and is defined by

d(a,M) := inf
b
{d(a, b)|b ∈ M} and d(a, b) := ‖a − b‖.

Definition 2. (Dahlquist (1959))
The logarithmic norm of a matrix M ∈ R

n×n is defined as

µ(M) = lim
h→0+

‖ I + hM ‖ −1

h
,

where the symbol ‖ · ‖ represents any matrix norm defined
in the inner product space with inner product < x, y >, I
is the compatible dimension identity matrix and x, y ∈ R

n.

2. PROBLEM SETUP

Consider the continuous-time nonlinear system with ex-
ogenous disturbances

ẋR(t) = f(xR(t), u(t)) + w(t), (1a)

u(t) ∈ U , (1b)

w(t) ∈ W , (1c)

where xR(t) ∈ R
nx denotes the system state and u(t) ∈

R
nu the control input at time instant t, and w(t) ∈ R

nx

represents a persistent disturbance. Here, we assume that
W := {w ∈ R

nx | ‖w‖ ≤ β}, i.e., the norm of the
disturbance is bounded. The input constraint set U is a
compact set and contains 0 ∈ R

nu in its interior.

Remark 2.1. The norm which we adopted in this paper
can be any induced norm defined in the inner product
space. However, the Hausdorff distance and the vector
norm should have the same norm associated with the
considered disturbance.

The nominal dynamics of system (1) are defined by

ẋ(t) = f(x(t), u(t)). (2)

The optimization problem in the quasi-infinite horizon
MPC is formulated as follows:

Problem 1.
minimize

u(·)
J(x, Tp)

subject to

ẋ(t) = f(x(t), u(t)), x(t; x(t), t) = x(t),

u(τ) ∈ U τ ∈ [t, t + Tp],

x(t + Tp; x(t), t) ∈ Xf ,

where Tp is the prediction horizon, Q ∈ R
nx×nx and

R ∈ R
nu×nu are positive definite state and input

weighting matrices, J(x(t), Tp) :=
∫ t+Tp

t
‖x(s; x(t), t)‖2

Q +

‖u(s; x(t), t)‖2
Rds + ‖x(t + Tp; x(t), t)‖2

P is the cost func-
tional. The positive definite matrix P ∈ R

nx×nx is the ter-
minal penalty matrix, and E (x(t + Tp; x(t), t)) := ‖x(t +
Tp; x(t), t)‖2

P is the terminal penalty function. The termi-

nal set Xf := {x ∈ R
nx | xT Px ≤ α} is a level set of the

terminal penalty function. The term u(·; x(t), t) denotes
the predicted input function related to x(t) and x(·; x(t), t)
represents the predicted state trajectory starting from x(t)
under the control u(·; x(t), t). For simplicity, denote the
optimal value of J(x(t), Tp) as J0(x(t), Tp). In order to
guarantee feasibility and nominal stability, P and Xf have
to satisfy terminal conditions, see (Chen and Allgöwer,
1998) and (Mayne et al., 2000). We will introduce these
conditions in the next section.

The goal of this paper is to determine the upper bound
on the disturbance, β, as large as possible such that the
real system is robustly stable for all w ∈ W , i.e., the
real system under nominal MPC controller is robustly
stable (inherently robust). Notice here that in Problem 1,
the nominal system is used as prediction model and no
disturbances are taken into account.

Some fundamental assumptions are stated in the following:

Assumption 1. The system state x can be measured in-
stantaneously.

Assumption 2. f is twice continuously differentiable, and
f(0, 0) = 0. Thus, 0 ∈ R

nx is an equilibrium of the nominal
system.

Assumption 3. The system (2) has a unique solution for
any initial condition and any piecewise right-continuous
input function u : [0, Tp] → U .

According to the principle of MPC, the optimization prob-
lem will be solved repeatedly, when new measurements
are available at the sample instants tj = jδ, where δ is
a sample time and 0 < δ ≤ Tp, j ∈ Z[0,∞). The applied
control is

u∗(τ) := u(τ ; x(t), t), τ ∈ [t, t + δ).

3. INHERENT ROBUSTNESS TO PERSISTENT
DISTURBANCES

In this section, we discuss the inherent robustness prop-
erties of nominal MPC rather than propose a new robust
MPC scheme. First, we introduce a common way to con-
struct the terminal set and the terminal penalty function of
quasi-infinite horizon MPC, which will play an important
role in the analysis of inherent robustness properties.

3.1 Terminal Conditions for Nominal Stability

Lemma 1. (Chen and Allgöwer, 1998) Suppose that the
Jacobian linearization of the nominal system at the origin
is stabilizable, K ∈ R

nu×nx is the linear quadratic reg-
ulator (LQR) optimal feedback matrix of the linearized
system with weighting matrices Q ∈ R

nx×nx and R ∈
R

nu×nu , where Q > 0 and R > 0. Then, the Lyapunov
equation

(A + BK + κInx
)T P + P (A + BK + κInx

) = −Q∗

admits a unique positive definite and symmetric solution
P ∈ R

nx×nx , whenever κ ∈ [0,∞) satisfies

κ < −λmax(A + BK),

where Q∗ = Q + KT RK is positive definite. Furthermore,
there exists a constant α ∈ (0,∞) specifying a neighbor-
hood Xf := {x ∈ R

nx | xT Px ≤ α} of the origin such
that
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(1). Kx ∈ U , for all x ∈ Xf , i.e., the linear feedback
controller respects the input constraints in Xf ,

(2). Xf is positively invariant for the nominal system
controlled by the local linear feedback u = Kx.

Notice that u(τ) = Kx(τ), τ ∈ [t, t + Tp] is a feasible
solution to Problem 1 provided that x(t) ∈ Xf .

In the set Xf , u = Kx guarantees that dE(x)
dt

≤ −xT Q∗x
along the nominal trajectory, where Q∗ is defined in
Lemma 1. Then, there exists a positive constant τ such
that

−xT Q∗x ≤ −τxT Px, ∀x ∈ Xf ,

i.e., the linear control law u = Kx renders the nom-
inal system exponentially stable in Xf and ‖x(t)‖2 ≤

‖x(t0)‖
2e−τ(t−t0). The decay rate τ can be chosen as

τ ≤ τ0 = λmin(Q
∗)/λmax(P ).

The terminal control law u = Kx renders the nominal
system exponentially stable in the terminal set Xf and
drives the terminal state to a subset of the terminal set Xf .
This will help us understand the behavior of the system
dynamics under the terminal control law. Furthermore,
we will prove later that the MPC controller has the same
robustness properties as the terminal control law.

Lemma 2. If the state x(t) of the nominal system (2) lies
in Xf at time instant t, then there exists an s ∈ [t, t + δ]
such that the system trajectory under the terminal control
law enters into the set

Ω :=
{

x ∈ R
nx | xT Px ≤ e−τ0δα

}

at the time instant s.

Proof: Since x(t) ∈ Xf , x(t)T Px(t) ≤ α. Due to dE(x)
dt

≤

−xT Q∗x and −xT Q∗x ≤ −τ0x
T Px, we have dE(x)

dt
≤

−τ0x
T Px. Therefore, x(t + δ)T Px(t + δ) ≤ e−τ0δα. 2

Notice that Ω ⊂ Xf since e−τ0δ < 1.

In the following, an upper bound on the disturbance, β,
is estimated which will preserve the recursive feasibility of
Problem 1 if the online optimization problem is feasible
at the initial time instant. Then, robust stability is shown
based on an auxiliary functional which is continuous in
some specified set.

3.2 Robust Recursive Feasibility

In this subsection, we first introduce a general lemma
which provides a useful estimate on the deviation of the
real system state from the nominal system state. Based on
the lemma, we discuss the recursive feasibility of nominal
MPC with respect to persistent but bounde disturbances.

Lemma 3. (Dekker and Verwer, 1984) Consider the real
system (1) and the nominal system (2), where f(·, ·) is a
continuously differentiable function. The norm of ‖xR(t)−
x(t)‖ is, for t ≥ 0, not larger than the function φ(t) defined
by the scalar differential equation

dφ(t)

dt
= v(t)φ(t) + ‖w(t)‖

φ(0) ≥ ‖xR(0) − x(0)‖

for all t and for some fixed input u(·), where v(t) =

µ
(

∂f(x,u)
∂x

|x(t),u(t)

)

along the trajectory of x(t) and µ(·)

is the logarithmic norm.

It follows from Lemma 3 that the states of the systems (1)
and (2) satisfy

‖xR(t) − x(t)‖ ≤ ‖xR(0) − x(0)‖ev1(t)

+ev1(t)

∫ t

0

‖w(s)‖e−v1(s)ds

see (Dekker and Verwer, 1984). There exists a constant v
such that v(t) ≤ v for all t ∈ [0, Tp + δ], since x and u are
bounded, and f(x, u) is twice continuously differentiable.
Thus, for all t ∈ [0, Tp + δ],

‖xR(t) − x(t)‖ ≤ ‖xR(0) − x(0)‖evt +
β

v
(evt − 1), (4)

provided that ‖w(t)‖ ≤ β.

Remark 3.1. Since λmax(·) ≤ µ(·) ≤ σmax(·) and µ(·)
can be negative for some systems, (4) provides a less
conservative estimate on the deviation than the one based
on the Gronwall-Bellman inequality (Khalil, 2002).

The following lemma implies that if the disturbance is
small enough, the real system trajectory will stay in a tube
along the nominal trajectory during the specified interval
t ∈ [0, Tp + δ].

Lemma 4. Let x(t) be a solution of the nominal system (2)
with ū(t) ∈ U for all t ∈ [0, Tp + δ], and x(0) = x0.
Suppose that v(t) ≤ v for all t ∈ [0, Tp + δ]. Given ǫ> 0,
the trajectory of the real system (1) defined on [0, Tp + δ],
with xR(0) = x0 and u(t) = ū(t), lies in the tube

S(x0, ǫ) := {(t, xR) ∈ [0, Tp + δ] × R
nx | ‖xR − x(t)‖ ≤ ǫ} .

for all β ∈ [0, ǫv

ev(Tp+δ)−1
], where ǫ > 0 and x(t) is the

solution to (2) with the initial state x(t) = x0.

Proof: By continuity of x(t) in t (Chen and Allgöwer,
1998) and the compactness of [0, Tp + δ], we know that x(t)
is bounded on [0, Tp + δ]. Furthermore, the set S(x0, ǫ) is
a compact set which contains x(t) for all t ∈ [0, Tp + δ],
due to w ∈ W.

In the time interval [0, Tp + δ], because of (4) and xR(0) =
x(0), we have

‖xR(t) − x(t)‖ ≤
β

v
(evt − 1), ∀t ∈ [0, Tp + δ].

Since β
v
(evt − 1) is monotonically increasing in t for fixed

v, if β is small enough such that β
v
(ev(Tp+δ) − 1) ≤ ǫ, then

(t, xR(t)) ∈ S(x0, ǫ) for all t ∈ [0, Tp + δ]. 2

Assumption 4. The upper bound on disturbance is β ≤ β0

with

β0 =
(1 − e−τ0δ)α

λmax(P )

v

(ev(TP +δ) − 1)
.

Assumption 4 guarantees that the system trajectory of
the real system (1) lies in the tube S(x0, ǫ) along the
nominal system trajectory in the interval [0, Tp + δ], where

ǫ := (1−e−τ0δ)α
λmax(P ) .

Denote the Hausdorff distance of sets Xf and Ω as
d(Xf , Ω). Since the sets Xf and Ω have the same center
and shape, we know that

d(Xf , Ω) =
1

λmax(α−1P )
−

1

λmax(eτδα−1P )

=
(1 − e−τδ)α

λmax(P )
.
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Fig. 1. Tube along the nominal trajectory in [0, Tp +
δ]. Dashed line: nominal trajectory, solid line: real
trajectory.

Since ǫ ≤ (1−e−τ0δ)α
λmax(P ) and d(Xf , Ω) = (1−e−τδ)α

λmax(P ) , if the

terminal state of the nominal system stays in the set Ω, the
terminal state of the real system will stay in the terminal
set. That is, xR(Tp + δ) ∈ Xf , see Figure 1.

Now we are in a position to state the main result of
this subsection, which is about the recursive feasibility of
nominal MPC in the presence of disturbances.

Theorem 1. Assume that Problem 1 has a feasible solution
at x(t0), and denote the corresponding predicted nom-
inal control and state as u(t0 + τ ; x(t0), t0) and x(t0 +
τ ; x(t0), t0), respectively, τ ∈ [0, Tp]. Then, ũt0+δ(·) ∈
L

nu

[t0+δ,t0+δ+Tp] with

ũt0+δ(τ) =

{

u(τ ; x(t0), t0) τ ∈ [t0 + δ, t0 + Tp],
Kx(τ ; x(t0), t0) τ ∈ (t0 + Tp, t0 + δ + Tp],

is a feasible solution to Problem 1 at xR(t0 + δ), where
xR(t0 + δ) is a point on the trajectory of the real system
starting from x(t0) under the control u(τ ; x(t0), t0), τ ∈
[t0, t0 + δ]. Furthermore, (t0 + δ, xR(t0 + δ)) ∈ S (x(t0), ǫ).

Proof: Following Lemma 2, the control function ūt0(·) ∈
Lnu

[t0,t0+δ+Tp] with

ūt0(τ) :=

{

u(τ ; x(t0), t0) τ ∈ [t0, t0 + Tp],
Kx(τ ; x(t0), t0) τ ∈ (t0 + Tp, t0 + δ + Tp],

drives the trajectory of the nominal system from x(t0) into
the set Ω in the interval [t0, t0 + δ + Tp], i.e., x(t0 + δ +
Tp; x(t0), t0) ∈ Ω, and the trajectory of the real system with
the same control function will lie in the tube S(x0, ǫ) for
all t ∈ [0, t0 + Tp + δ] and for all w ∈ W.

Thus, xR(t0 + δ + Tp; x(t0), t0) ∈ Xf for all w ∈ W,

since d(Xf , Ω) = (1−e−τδ)α
λmax(P ) and ǫ = (1−e−τ0δ)α

λmax(P ) . Therefore,

ũt0+δ(·) is a feasible solution to Problem 1 at xR(t0 + δ).
2

3.3 Robust Stability

Let D denote the set of all initial states for which Problem
1 is feasible. Since u ∈ U and the prediction horizon Tp is
fixed and finite, D is a bounded set. Theorem 1 guarantees
the feasibility of Problem 1 for all time instants, and thus
D is a robust control invariant set for the system (1) under
the nominal MPC controller.

In this subsection, we first construct an artificial optimiza-
tion problem, whose input constraint set is a subset of the
original one. We show that the optimal cost functional
of the artificial optimization problem, which is an upper
bound on the cost functional of the original optimization
problem, is continuous in a compact set. Based on this
property, we prove that the system trajectory will ap-
proach a set around the origin even though there exist
small persistent disturbances.

Denote a function ûτ ∈ L
nu

[0,TP ] with

ûτ (s) :=

{

u(s + τ ; x(t0), t0) s ∈ [0, t0 + Tp − τ ],
Kx(s + τ ; x(t0), t0) s ∈ (t0 + Tp − τ, t0 + Tp],

where τ ∈ [t0, t0 + Tp] and ûτ (s) is the value of ûτ at
time instant s. Notice that ût0 is the optimal solution
to Problem 1 at x(t0) and ûτ is a feasible solution to
Problem 1 for the initial state x(τ), τ ∈ [t0, t0 + Tp],
where x(τ) := x(τ ; x(t0), t0) is a point on the predicted
trajectory of the nominal system (2) starting from x(t0)
at time instant t0.

Denote

H(x(t0)) :=
{

(t, xR(t; x(t0), t0)) ∈ [t0, t0 + Tp] × R
nx |

‖xR(t; x(t0), t0) − x(t; x(t0), t0)‖ ≤
β

v
(evt−1), ∀w ∈ W

}

,

which is a reachable set of the system (1) under the
control ût0 . Since w ∈ W , H(x(t0)) is a compact set and
H(x(t0)) ⊆ S(x0, ǫ).

Denote U0 :=
{

(t, u) ∈ [t0, t0 + Tp] × L
nu

[0,TP ] | u = ût

}

.

By continuity of ûτ in x on the predicted trajectory of the
nominal system (2) starting from x(t0) at time instant t0,
and the compactness of [t0, t0 + Tp], U0 is a compact set
of trajectories.

For a pair (th, x(th)) ∈ H(x(t0)), th ∈ [t0, t0 + Tp], define
an artificial optimization problem

Problem 2.

minimize
u

J̄(x(th), Tp)

subject to

ẋ(t) = f(x(t), u(t)), x(th; x(th), th) = x(th),

u ∈ U0,

x(th + Tp; x(th), th) ∈ Xf ,

where J̄(x(th), Tp) :=
∫ Tp

0 ‖x(s + th; x(th), th)‖2
Q + ‖u(s +

th; x(th), th)‖2
Rds+‖x(th+Tp; x(th), th)‖2

P , and u ∈ L
nu

[0,TP ]

is a predicted input trajectory rather than a vector in
R

nu . For simplicity, denote the optimal value of J̄(x, Tp)
as J̄0(x, Tp), i.e., J̄0(x, Tp) := minu∈U0 J̄(x, Tp).

Notice that a feasible solution to Problem 2 is also a
feasible solution to Problem 1, but an optimal solution
to Problem 2 is only a feasible solution to Problem 1,
i.e., J0(x, Tp) ≤ J̄0(x, Tp). This stems from the fact that
ûτ (s) ∈ U , for all s ∈ [t0, t0 + Tp].

For ǫ ∈
(

0, (1−e−τ0δ)α
λmax(P )

]

, denote

B(xs, ǫ) :=
{

x ∈ R
nx | (x − xs)

T (x − xs) ≤ ǫ2
}

.

Define U : H(x(t0)) → U0 which maps the pair
(th, x(th)) ∈ H(x(t0)) onto its feasible solutions u ∈ U0
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of Problem 2. Notice that U(·) is a set-valued function of
x in H(x(t0)) since both ûτ1 and ûτ2 are feasible solutions
to Problem 2 at x provided that x ∈ B (x(τ1; x(t0), t0), ǫ)∩
B (x(τ2; x(t0), t0), ǫ), τ1, τ2 ∈ [t0, t0 + Tp].

Lemma 5. J̄0(x, Tp) is continuous at x(t), (t, x(t)) ∈
H(x(t0)).

Proof: By Proposition 1, the set-valued map U(·) is outer
semicontinuous in H(x(t0)) because its graph, H(x(t0))×
U0, is closed. There exists a τ such that for all (t, x(t)) ∈
H(x(t0)), x(t) ∈ B(x(τ ; x(t0), t0), ǫ), since H(x(t0)) ⊂
S(x0, ǫ). In terms of Theorem 1, the input function ûτ

is a feasible solution for all x′ ∈ B
(

x(τ ; x(t0), t0), ǫ
)

.
Assume that {xi} is an infinite sequence converging to
x′, where xi is the element of the sequence. Then, there
exists a constant N such that xi ∈ B

(

x(τ ; x(t0), t0), ǫ
)

for
all i ∈ Z[N,∞). Since U(xi) ≡ ûτ is a feasible solution
to Problem 2 at xi for all i ∈ Z[N,∞), and the sequence
{U(xi)} will converge to ûτ , it follows from Proposition 2
that U(·) is inner semicontinuous at x. Thus, U(·) is inner
semicontinuous at each (t, x(t)) ∈ H(x(t0)), which further
indicates that U(·) is inner semicontinuous in H(x(t0)).
Together with the fact that U(·) is outer-semicontinuous,
we have that it is continuous in H(x(t0)).

Since J̄(x, Tp) : H(x(t0)) × U0 → [0,∞) is continuous
(Rawlings and Mayne, 2009), U(·) is continuous, com-
pact valued and satisfies U(x(t)) ⊂ U0 for all (t, x(t)) ∈
H(x(t0)) where U0 is compact. Then, J̄0(·, Tp) is contin-
uous, see Theorem C.28 in (Rawlings and Mayne, 2009).
2

Remark 3.2. The optimal cost J0(x, Tp) is not necessarily
continuous in contrast to J̄0(x, Tp), see (Rawlings and
Mayne, 2009).

Since J̄0(x, Tp) is continuous in the compact set H(x(t0)),
it is bounded. Therefore, there exists a parameter L≥ 0
such that

J̄0(xR(t), Tp) − J̄0(x(t; x(t0), t0), Tp) ≤

L‖xR(t) − x(t; x(t0), t0)‖, ∀t ∈ [t0, t0 + Tp].

Notice that L is only a local Lipschitz constant of J̄(x, Tp)
and L is a function of x and β. For fixed x, a smaller β
indicates a smaller set H(x(t0)), which further results in
a smaller L.

For s2 ∈
(

0, α
λmax(P )

]

, denote a set

Bs :=
{

x ∈ R
nx | xT x ≤ s2

}

.

Thus, Bs ⊆ Xf . Denote L0 := maxx∈D⊖Bs
L(x, β0).

The following lemma shows that the state of the real
system converges to Bs, if the disturbances are small
enough.

Theorem 2. Suppose that

(a). the exogenous disturbance satisfies ‖w(·)‖ ≤ βs,

where βs ≤ min
{

β0,
ρδvs2λmin(Q)

L0(evt−1)

}

and ρ ∈ (0, 1),

(b). Problem 1 has a feasible solution at the initial time
instant t0.

Then,
(1). the optimization problem is feasible for all t≥ t0,

(2). the system state is robustly asymptotically stable to
the set Bs, that is, limt→∞ d(xR(t),Bs) = 0.

Proof: (1). Recursive feasibility is deduced directly from
Theorem 1.

(2). In terms of the definition of J0(x, Tp), J0(0, Tp) = 0
and J0(x, Tp) > 0 for all x 6= 0. Since J0(x, Tp) ≤
J̄0(x, Tp) for all x ∈ H(x(t0)),

J0(xR(t0 + δ, x(t0), t0), Tp) − J0(x(t0), Tp)

≤ J̄0(xR(t0 + δ, x(t0), t0), Tp) − J0(x(t0), Tp).

Since the optimal cost functional is less than any feasible
one and (Chen and Allgöwer, 1998)

J̄(x(t0 + δ, x(t0), t0), Tp) − J0(x(t0), Tp)

≤ −

∫ t0+δ

t0

(

‖x(s, x(t0), t0)‖
2
Q + ‖u(s, x(t0), t0)‖

2
R

)

ds,

we have

J0(xR(t0 + δ, x(t0), t0), Tp) − J0(x(t0), Tp)

≤J̄0(xR(t0 + δ, x(t0), t0), Tp) − J̄(x(t0 + δ, x(t0), t0), Tp)

−

∫ t0+δ

t0

(

‖x(s, x(t0), t0)‖
2
Q + ‖u(s, x(t0), t0)‖

2
R

)

ds,

≤J̄0(xR(t0 + δ, x(t0), t0), Tp) − J̄0(x(t0 + δ, x(t0), t0), Tp)

−

∫ t0+δ

t0

(

‖x(s, x(t0), t0)‖
2
Q + ‖u(s, x(t0), t0)‖

2
R

)

ds.

Due to the continuity of J̄0(x, Tp) in the set H(x(t0)), we
have

J0(xR(t0 + δ, x(t0), t0), Tp) − J0(x(t0), Tp)

≤L0‖xR(t0 + δ, x(t0), t0) − x(t0 + δ, x(t0), t0)‖

− λmin(Q)

∫ t0+δ

t0

‖x(s, x(t0), t0)‖
2ds

− λmin(R)

∫ t0+δ

t0

‖u(s, x(t0), t0)‖
2ds.

In addition, it follows from (t0 + δ, xR(t0 + δ, x(t0), t0)) ∈
H(x(t0)) that

‖xR(t0 + δ, x(t0), t0) − x(t0 + δ, x(t0), t0)‖ ≤
β0(e

vδ − 1)

v
.

Since ‖x(s, x(t0), t0)‖
2 ≥ s2 for all x(s, x(t0), t0) /∈ Bs, we

have

J0(xR(t0 + δ, x(t0), t0), Tp) − J0(x(t0), Tp)

≤
L0β0(e

vδ − 1)

v
− λmin(Q)δs2, ∀x(s, x(t0), t0) /∈ Bs.

Thus,

J0(xR(t0 + δ, x(t0), t0), Tp) − J0(x(t0), Tp)

< (ρ − 1)λmin(Q)δs2 < 0,

is satisfied if ‖w(t)‖ ≤ βs for all t≥ t0 and x(s, x(t0), t0) /∈
Bs. Therefore, the system trajectory will enter into the set
Bs in finite time since J0(x(t0), Tp) is bounded. Further-
more, the set Bs is a robust invariant set of the system
because the system state will stay in the set with respect to
the disturbances w(·), where ‖w(t)‖ ≤ βs, for all t ≥ t0 2

Corollary 1. Suppose that the disturbance w(·) is decay-
ing, i.e., limt→∞ ‖w(t)‖ → 0, and ‖w(t)‖ ≤ β0, for all
t ≥ t0. Then, x = 0 is asymptotically stable.
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Proof: Recursive feasibility is deduced directly from The-
orem 1. In case of a decaying disturbance, the distur-
bance will be arbitrarily small for a large enough time
instant. Thus, based on Theorem 2, the system tra-
jectory will approach the set Bs in finite time under
nominal MPC controller, for all s2 ∈ (0, α

λmax(P ) ], and

limt→∞ d(xR(t),Bs) = 0. Thus, together with the results
in Theorem 2, x = 0 is asymptotically stable. 2

Based on the discussion, we conclude that the degree
of inherent robustness of quasi-infinite horizon MPC of
nonlinear system with respect to bounded disturbances
w(t) depends on

(1). the choice of the terminal ingredients,
(2). the upper bound on the disturbance ‖w(t)‖∞,
(3). the prediction horizon Tp,
(4). the logarithmic norm of the considered system.

4. CONCLUSIONS

In this paper, we proved that quasi-infinite horizon MPC
of nonlinear systems with input constraints has some ro-
bustness. The optimization problem used for the MPC has
terminal constraints. Compared with the existing results,
the analysis does not rely on the assumptions of convex
constraint sets, recursive feasibility and continuity of the
cost functional or of the control law. Instead, recursive
feasibility was directly proven, and robust stability with
respect to persistent disturbances can be shown based on
continuity of an auxiliary functional. Logarithmic norm
rather than Lipschitz constant was adopted to analyze the
metric of robustness, which made the results less conser-
vative.
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APPENDIX

In what follows, a collection of some well-known properties
of set-valued function used in this paper are presented (see
for instance, Rawlings and Mayne (2009)).

Definition 3. (Set-valued function)
A set-valued function φ : R

n 7→ R
m is a function whose

value φ(x) for each x in its domain is a set.

Definition 4. (Outer semicontinuous function)
A set-valued function φ : R

n 7→ R
m is said to be outer

semicontinuous at x if φ(x) is closed and if, for every
compact set Ω such that φ(x) ∩ Ω = ∅, there exists a
δ> 0 such that φ(x′) ∩ Ω = ∅ for all x′ ∈ x ⊕ δB0. The
set-valued function φ : R

n → R
m is outer semicontinuous

if it is outer semicontinuous at each x ∈ R
n.

Definition 5. (Inner semicontinuous function)
A set-valued function φ : R

n 7→ R
m is said to be inner

semicontinuous at x if, for every open set Ω such that
φ(x)∩Ω 6= ∅, there exists a δ> 0 such that φ(x′)∩Ω 6= ∅

for all x′ ∈ x⊕ δB0. The set-valued function φ : R
n → R

m

is inner semicontinuous if it is inner semicontinuous at each
x ∈ R

n.

Definition 6. (Continuous function)
A set-valued function φ : R

n 7→ R
m is continuous (at x) if

it is both outer and inner semicontinuous at x.

Proposition 1. (Outer semicontinuity and closed graph)
A set-valued function φ : R

n 7→ R
m is outer semicontin-

uous in its domain if and only if its graph Z is closed in
R

n × R
m.

Proposition 2. (Inner semicontinuity)
A set-valued function φ : R

n 7→ R
m is inner semicontin-

uous at x if and only if, for every infinite sequence {xi}
converging to x, there exists a y ∈ φ(x) and an infinite
sequence yi satisfying yi ∈ φ(xi) for all i such that y is a
limit of {yi}.
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